Language AI Playbook
  • 1. Introduction
    • 1.1 How to use the partner playbook
    • 1.2 Chapter overviews
    • 1.3 Acknowledgements
  • 2. Overview of Language Technology
    • 2.1 Definition and uses of language technology
    • 2.2 How language technology helps with communication
    • 2.3 Areas where language technology can be used
    • 2.4 Key terminology and concepts
  • 3. Partner Opportunities
    • 3.1 Enabling Organizations with Language Technology
    • 3.2 Bridging the Technical Gap
    • 3.3 Dealing with language technology providers
  • 4. Identifying Impactful Use Cases
    • 4.1 Setting criteria to help choose the use case
    • 4.2 Conducting A Needs Assessment
    • 4.3 Evaluating What Can Be Done and What Works
  • 5 Communication and working together
    • 5.1 Communicating with Communities
    • 5.2 Communicating and working well with partners
  • 6. Language Technology Implementation
    • 6.1 Navigating the Language Technology Landscape
    • 6.2 Creating a Language-Specific Peculiarities (LSP) Document
    • 6.3 Open source data and models
    • 6.4 Assessing data and model maturity
      • 6.4.1 Assessing NLP Data Maturity
      • 6.4.2 Assessing NLP Model Maturity:
    • 6.5 Key Metrics for Evaluating Language Solutions
  • 7 Development and Deployment Guidelines
    • 7.1 Serving models through an API
    • 7.2 Machine translation
      • 7.2.1 Building your own MT models
      • 7.2.2 Deploying your own scalable Machine Translation API
      • 7.2.3 Evaluation and continuous improvement of machine translation
    • 7.3 Chatbots
      • 7.3.1 Overview of chatbot technologies and RASA framework
      • 7.3.2 Building data for a climate change resilience chatbot
      • 7.3.3 How to obtain multilinguality
      • 7.3.4 Components of a chatbot in deployment
      • 7.3.5 Deploying a RASA chatbot
      • 7.3.6 Channel integrations
        • 7.3.6.1 Facebook Messenger
        • 7.3.6.2 WhatsApp
        • 7.3.6.3 Telegram
      • 7.3.7 How to create effective NLU training data
      • 7.3.8 Evaluation and continuous improvement of chatbots
  • 8 Sources and further bibliography
Powered by GitBook
On this page
  1. 1. Introduction

1.3 Acknowledgements

This playbook was created as part of the 4 Billion Conversations project. The project is being run by CLEAR Global and is funded by Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ).

We would like to say thank you to the many people who helped with this document, including:

  • Natural Language Processing (NLP) researchers Dr. David Adelani, Dr. Duygu Ataman, and Dr. Mathias Müller for sharing their insights and giving feedback, and

  • the many partners that shared their time, knowledge and feedback with us, including Malaica, Pattan (Pakistan), Families Fit for Children (Uganda), and Reach a Hand Uganda.

Previous1.2 Chapter overviewsNext2. Overview of Language Technology

Last updated 1 year ago